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Abstract

In the current paper, we study the asymmetric normal-form game between two heterogeneous groups of populations by
employing the stochastic replicator dynamics driven by Lévy process. A new game equilibrium, i.e., the game
equilibrinm of a stochastic differential cooperative game on time, is derived by introducing optimal-stopping technique
into evolutionary game theory, which combines with the Pareto optimal standard leads us to the existence of Pareto
optimal endogenous matching.
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1. Introduction

Our purpose of the paper is to supply a general framework for studying Pareto-optimal endogenous
matching in any given normal-form game situations with two groups of heterogeneous populations.
Firstly, the existence of the endogenous matching is confirmed. Secondly, the derived endogenous
matching exhibits the following good properties: Pareto efficiency, individual rationality, and also
fairness. Furthermore, random matching as an extreme case of the endogenous matching under
consideration yields economic-welfare intuitions and implications. Indeed, the present study provides
conditions under which the well-known random matching is asymptotically Pareto efficient. And in this
sense, we can further argue that this investigation has illustrated the existence of Pareto-optimal
social structure or social network in given game situations. In other words, it is confirmed that there
exists a matching mechanism such that any given social structure can be led to the Pareto-optimal
social structure. This hence deepens our understanding of matching mechanism in game theory.'

I Noting that Haag and Lagunoft (2006) address the question of the optimal spatial or neighborhood design when free-
rider problems are localized, they indeed share the similar basic idea as the current paper. Nevertheless, there are two
obvious differences between the both. Firstly, they focus on free-rider problems when social spillovers exist, that is, their
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It is convincing to argue that people live in a highly structured society (see, Schelling, 1969, 1971,
Bowles and Gintis, 1998; Pollicott and Weiss, 2001; Zhang, 2004; Pacheco et al., 2006; Pacheco et al.,
2008) consists of groups rather than individuals, which implies that random matching will not always
provide us with compelling approximation to reality when we are concerned with the interactions
among the players. In fact, Ellison (1993) shows that local interaction® will have very important and
also different implications in equilibrium selection relative to that of uniform interaction or random
matching (e.g., Gilboa and Matsui, 1992). So, given the importance of non-random matching in
equilibrium selection, we express the motivation of the present paper as follows, i.e., can we directly
prove the existence of certain non-random matching that is Pareto optimal and also endogenously
determined in a given game situation? If we can, what are the conditions we will rely on? In other
words, the major goal of the present exploration is not to study any exogenously given matching
mechanism but to find out the optimal matching mechanism in a given game situation."

In two pioneering papers, Kandori et al. (1993) and Young (1993) prove that the trial-and-error
learning processes of the players will definitely converge to one particular pure-strategy Nash
equilibrium, which is named as the long run equilibrium by Kandori et al. and the convention by
Young. From the perspective of multiple-equilibrium problem, they provide us with an equilibrium
selection device, under which the players are correctly predicted to play a particular Nash
equilibrium. However, we can also evaluate their contribution from the following viewpoint, ie.,
provided a particular Nash equilibrium, they prove that there exists a pattern of learning mechanism
that will definitely lead the players to play the given Nash equilibrium. To summarize, they confirm
the existence of certain type of learning mechanism, based upon which the players’ behavior will be
uniquely predicted in the long run. Instead of emphasizing micro-strategy, we focus on macro-structure
and it is confirmed that there exists certain macro-structure or social network (e.g., Skyrms and
Pemantle, 2000; Bala and Goyal, 2000; Galeotti et al., 2006, and among others) under which one
particular Pareto optimal Nash equilibrium will be definitely played by the players.

In the paper, we are encouraged to study the asymmetric normal-form games between two
heterogeneous groups of populations under the modified framework of evolutionary game theory.

problem is much more explicit than that of the current study. And hence the present paper supplies us a much more
general framework. Secondly, they employ graph theory and focus on specific spatial-structure while the current
investigation uses evolutionary game theory and optimal stopping theory. All in all, our endogenous matching does (to
some extent) include the considerations of the above spatial structure.

2 For example, it is induced or determined by the following factors: institutional segregation, market division, spatial
structure, informational distribution, reputation, preference, emotion and motive, and so on. In particular, individuals
usually have motives to sort themselves into matches with like agents, for example, better-qualified workers match with
better jobs, more handsome men matry more beautiful women, that is, only “similat” agents match, as is emphasized by
assortative-matching theory (see, Shimer and Smith, 2000; Atakan, 2006; Hoppe et al., 2009; Eeckhout and Kircher, 2010,
and among others).

3 These local interaction settings share the characteristic that each person interacts with only a subset of the relevant
population. One economic intuition of this aspect is to capture in a simple abstract way a socioeconomic environment in
which markets do not exist to mediate all of agents’ choices (see, Bisin et al., 2006). As noticed and stated by Bisin et al.
(2000), local interactions represent an important aspect of several socioeconomic phenomena.

4 That is to say, in an artificial world, we can employ the matching mechanism to lead the players to play the Pareto
optimal Nash equilibrium regardless of the enforcement cost. And in this sense, matching mechanism plays the role of
equilibrium selection device.
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Each of the two groups is assumed to have countably many pure strategies. Hyper-rational
assumptions (see, Aumann, 1976; Andreoni and Samuelson, 2006) about the players broadly used in
classical non-cooperative game theory will be dropped in the present model, instead, the players or
individuals play the game following certain adaptive learning processes arising from the stochastic
replicator dynamics driven by Lévy processes (for the first time). On the contrary, the strategies
themselves are supposed to be smart and rational enough to optimize their fitness, which directly
depends on the stochastic replicator dynamics or the learning processes of the players, following the
classical as 7f methodology from the perspective of posteriori. And the corresponding control
variables of these fitness-optimization problems are chosen to be stochastic stopping times or
stopping rules, which reasonably reflects the fact that strategies themselves are no longer suitable for
the roles of control variables (as in the best-response correspondences of Nash equilibria) because
“strategies” of the players’ strategies will not be well-defined through the traditional approach.
Luckily, noting that the optimal stopping rules are partially determined and completely characterized
by the learning processes of the players, the optimal stopping rules as a vector may be exactly one of
the Nash equilibra, no matter it is mixed-strategy Nash equilibrium or pure-strategy Nash
equilibrium, of the original normal-form games.

Generally speaking, the optimal stopping rules as a vector will not be equal to anyone of the Nash
equilibria, that is, there exists certain difference between the both. However, it is confirmed that it is
just the difference between the optimal stopping rules as a vector and the Pareto optimal Nash
equilibrium of the original normal-form game that established our Pareto optimal endogenous
matching. We, hence, to the best of our knowledge, enrich the matching rule widely used in
evolutionary game theory by naturally adding into economic-welfare implications for the first time.

Moreover, it is shown that the well-known random matching (e.g., Maynard Smith, 1982; Fudenberg
and Levine, 1993; Ellison, 1994; Okuno-Fujiwara and Postlewaite, 1995; Weibull, 1995; Hofbauer
and Sigmund, 2003; Benaim and Weibull, 2003; Aliprantis et al., 2007; Duffie and Sun, 2007;
Takahashi, 2010; Podczeck and Puzzello, 2012, and among others) just represents one special and
extreme case of the current endogenous matching and we supply the conditions under which the
random matching will be asymptotically Pareto efficient. Thus, proving the existence of Pareto optimal
endogenous matching would be regarded as one innovation of the present paper by noticing the
above facts.

In the next section, we will construct the formal model, introduce some basic concepts and prove the
key theorem of the present paper. There is a brief concluding section. All proofs appear in the
Appendix.
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2. Formulation

2.1. Set-up and assumptions

Tet A

11 x1I,

with A B, e[

I\ x1I, > IixI, >

be the payoff matrix for row players and B, be the payoff matrix for column players
and I, I,21. Here, and throughout the current paper, we study the
replicator dynamics of [;XI, normal-form games between two groups of populations. Put

ZZIZIM "(t) M(t), where M (t) denotes the number of strategy-i, players at period ¢. Similarly,

let Z:ZZIN 2(t)J N(t), where N2 (t) denotes the number of strategy-i, players at period ¢.

We let X'"(t)0 M" (t)/M (), Y2(@)U N*- (t)/N(t) denote the frequencies of strategies i, and i,,
respectively, with 7, =1,2,...,1, and i, =1,2,...,1,. Therefore, the average payoffs of strategy 7, and
strategy i, are given by u(i,Y (1)) [ EiITAY(t) and u(i,, X (1)) EIZBTX(I) , respectively, with the
superscript “T” denoting transpose, and XU (Xl(t), s X, LX) )T ,

YO U (Y'(@),rs Y20, ¥ (1) and als0 € = (0,000, 1,..,0)" , &, = (0, 1,...,0)" , where the i, -th

L)

<\

entry and i, -th entry are ones, respectively, for i, =1,2,...,1, and i, =1,2,....1,.

Specifically, in the current paper, we employ the following endogenous matching mechanism by
incorporating two vectors, ie., O (ﬁl,...,ﬁi‘ e P )T el and pOP,...p",...p") el "

with 22:1 p" =0 and z:ﬂ P =0, into the present model. Now, the generalized average payoffs of
strategies i, and i, are rewritten as u(i,Y (1) +p) 0 EilTA(Y(t)+[)) =_ilTAY(t)+EiITA/3 and
u (iz, X))+ /3) i é;BT (X(t) +/3) = NIZBTX(I) + 5IZBT/_) , respectively, for i =L12,.,1 and
i,=12,..,1,. In other words, u(i,Y()+p) and u(i,,X(#)+p) can be seen as El.lTA[) -
perturbation and 5;3 "o -perturbation of u (il,Y (t)) and u (iz, X (t)) , respectively.

We now denote by (Q(Wiﬁ) ,F W) , {Ft(Wiﬁ) } ,P(Wiﬁ)) the filtered probability space with

0<1<7® (w)

F" [ {Ft(Wiﬁ) } the P™”) —augmented filtration generated by d; —dimensional standard

0<1<7® (w)
. . ' ' : i i i ' .
Brownian motion (W’ﬁ ),0<t<7” (a))) with F""7 0 F (ZV( )), we Q") and 77 (w) a stopping
T [0)

time, to be endogenously determined. Moreover, we define
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N (drdz? )0 (N (dr.de) ) ... N2 (dr.del; ))T
0 (Nliﬁ (dt,dz{'ﬁ)_vl"ﬁ (dz;'ﬁ)dt,...,N,i/; (dt,dz;/;)—v;f; (dz;/;)dt)T,
ng

. . i . . . . i .

in which {N l/f } are independent Poisson random measures with Lévy measures V,/f coming from
Iy=1
s

ng  independent (one-dimensional) Lévy  processes n () 0 j(: JL /N (ds,dzfﬁ ),...,
7];’; e j{: . Z,if; N ;’; (ds,dzfl/; ) with [ ;0 0 —{0}, and then the corresponding stochastic basis is

given by (Q(Niﬁ),F(Niﬁ),{F,W)} ,P(’W’) with F(W)D{Ft<"7i”>} C the PV

0<1<7® () 0<1<7® ()

15 . . .
we QY and ¥ (w) a stopping time, to be

bl

. V6 V6
augmented filtration and F [ F (;V( )
T
endogenously determined. Thus, we are provided with a new stochastic basis (Ql”,F ”,
. . . iB N . iB i : iﬁ "iﬁ
{F,’”} ) ,P’ff), where Q7”0 Q"' x Q" FYOF"®@F"), FYUF" ®F"",
0<t<7 7 ()

P" 0 P" ® PY) and F” [0 {Fti” } denotes the corresponding filtration satisfying the

o<zt (w)
well-known “usual conditions”. Here, and throughout the current paper, E” is used to denote the

expectation operator with respect to (w. r. t.) the probability law P’ for V ig=12,.,1, and
for f=1,2. Naturally, we have stochastic basis (Qﬁ,F ﬁ, {Ftﬁ} ,Pﬁ) with Q7 [ XI.I; Q.i/f,

0<t<7? (w)

F’[ ®f/fF’7f, F /0 ®f/th’7f, P/ [ ®$Piﬁ, (W) [ vf;r"/f(w)m vffz_'i”(a)) if =1, and

@0 v (@0 v/ T (@) if f=2 wih oeQ’, F’U{F7’} denoting  the

0<t<7? (w)
corresponding filtration satisfying the usual conditions, and E” is used to denote the expectation
operator w. t. t. the probability law P? for B=1,2. Furthermore, we are led to the following
probability space (Q,F, {Ft}ogtg(w) ,P) with QO xzﬁ,zlgﬁ , FO ®'23:1F s F [0 ®;_F B

p=1"1 >
PO ®2ﬁ:1P'B , T(w) U vzzl ?(w) with we Q, F[ {F t} denoting the corresponding filtration

0<t<r(w)
satisfying the usual conditions, and E is used to denote the expectation operator w. r. t. the
probability law P .

We now define the canonical Lebesgue measure g on measure space (0 ,, B (O +)) with

0.0 [O,oo), ,,0(0,0) and B (D +) the Borel sigma-algebra, and also the corresponding
regular properties about Lebesgue measure are supposed to be fulfilled. Thus, we can define the
following product measure spaces (Qiﬁ x[, ,F*®B (O +)) and (QﬁXD ., ,F/®B (0 +)) with
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corresponding product measures i ® P” and u ® P?, respectively, for Vi, =1,2,...,1; and for

B=1,2.

Now, based upon the probability space (Qiﬁ JE"” E"% p” ) for f=1,2, and following Fudenberg

and Harris (1992), Cabrales (2000), Imhof (2005), Benaim et al (2008), Hofbauer and Imhof (2009),
the stochastic replicator dynamics’ of the two groups of populations can be respectively given as
follows,

dl nl ~ . .
dM' (1) = M (1) {E{ AY(0)dt+5, (OdW O+ [ 7, (6.7 )N} (d.dz] )} ,
k=1 L=t

dy ny . )
dN"(1)= N" (;){gg B'X(0dt+Y 6, W2+ | 7, (.20 ) N (dedzp )} .
ky=1 L=1" "

where M"(t) is assumed to be F"®B (0 ,)—adapted, N (¢) is F*®B ([ ,)—adapted, Y(¢) is
also assumed to be F’®B (0, )—adapted, X () is F'®B (I ,)—adapted, &, (1) and 7, (£.2] )
are  Fi®B (0,)-progressively measurable, and &, () and 7, (t.2}) are F:®
B (D) —progressively measurable, for Vi =12,...1,, ¥V i,=12,...1,, ¥V k=12..d,, ¥V
ky=1,2,...d,, ¥V [, =1,2,..n, and ¥ [, =1,2,..,n,.

ASSUMPTION 1: Throughout the current paper, both M (t) and N(t), sufficiently large, are assumed to be
finite constants.

Notice from Assumption 1 that the sizes of the two populations are finite constants, based on It6’s
rule one can easily obtain,

4 i ~ . .
dX"(t)= X" () {EITAY(t)dt +2.8,, (OdW O+ [ 7, (6.7 )Ny (dr.dz] )}
k=1 4=1""°
0 X" @) [z{AY(t)dH g AW )+, 7' (2" )N (dr,dz’ )} ,
& o) ~ . .
dY" (1) =Y"(t) {é,{BTX(r)dr +>.6, AW O+ [ 7, (120 ) N (drdzp )}
ky=1 L=1"""

DY (@)| &L BT X ()dt+ 6" (dW* () + [ 7 (1,27 )N (dr,dz” )]

> Throughout, the stochastic replicator dynamics will help us to construct adaptive learning processes for the players
following the argument of Gale et al. (1995), Binmore et al. (1995), Borgers and Sarin (1997), Cabrales (2000), and Beggs
(2002). Thus, we will take indifference between the stochastic replicator dynamics and the adaptive learning processes.
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subject to the initial conditions, ie., Wt(0)=(0,..,0" P'"—as., W2(0)=(0,..,0)" P>—as.,
X(0) = (XI(O),...,X“ ), X"(0) 0 (60 ¥ x) 0 x>0 P —as,, Y (0) =(Y'(0),

i I T 1 i L\’ 2 i .
wn¥2(0),., Y2 (0) O (¥ y™) D y>0 P’—as, X'(r) s assumed to be
F"®B ([, )—adapted, and Y"(¢) is assumed to be F*®B ([ , ) —adapted, for V i, =1,2,..., I, and

Vi,=12,.,1,. Moreover, with a little abuse of notations, we put O 1(0) = (5 ill(O),
_ _ T _ _ _ T . . . _ . _ .
0, (0),...0,, (O)) 0 (o;ll,...,oglkl,...,ogldl) 0 o", 7" (0,z“)=(7/,.11(0,z{‘),...,7/,.1,1 (0,z,’l‘),...,

7, (0.21)) O (7 (217 (21 ) T (2 ))T 17", 6%(0)=(6,,0)....6,,,(0)....

G0 (@) 0 (6,10nGnGy) 06, and 7 (0.2%) = (7, (0.27 ) iy, (022 )1

Vin, (O, z”fz ))T [ (771.21 (zfz ),...,%2,2 (ZZ ),...,%znz (z,’fz ))T 0 7~ (ziz ) , for Vi=L2,.,I and Vi

=12,....,1,. And also we set the following technical assumption,

ASSUMPTION  2: The initial conditions X" (0) =x" >0, Y*(0)=y*>0, X(0)=x>0 and
Y(0)=y >0 are all supposed to be deterministic and bounded for ¥ i, =1,2,....1, and ¥ i,=12,....1,.

Furthermore, &' #0 P'—as, 62 #0 P%—ay, 7_/1'111 (t, Z;I‘) > —1+8,’;‘ U ® P' —ae, and
Vo (t2)>—1+€ w®P" —ae, for V& >0, & >0 and for V iy =12,..1; i,=12,...1,;
L=12,...,n and l,=1,2,....n,.

2.2. Stochastic differential cooperative game on time

Now, as in the model of Nowak et al (2004), and Imhof and Nowak (2000), we define the following
generalized expected discounted fitness functions,

£ (LY®)DEL [exp(—e_i‘t){l—wi‘ +iv [ A(Y (1) + p)]}},

(. X@®)0E!, [exp(—éizt){l—wiz i [T B (X (0)+ p)]}}.
with 8" , 6" e [O,l] (Vi=12,..,1; i,=12,..1,) denoting the discounted factors, wh, oW
€ [O,l] (Vi,=12,..,1; i,=12,..,1,) the parameters that measure the contributions of the
matrix payoffs of the game to the fitness of the corresponding strategies, and Efw), EEM)

representing the expectation operators w. r. t. the complete probability law P?, P' with depending
on initial conditions (s,y)e U , X [0,1]12 and (s,x)e ], X [0,1]11 , respectively. Thus, the problem,
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after technically modifying the above generalized expected discounted fitness functions, facing us can
be expressed as follows,
PROBLEM 1 (Stochastic Differential Cooperative Game on Time): We need to demonstrate that there

exist two vectors of F —stopping times 7 (@)[] (Z_-l*(w),---,l_'il*(w)v"’Z_-Il*(w))Tand (o)l
(fl*(a)),”‘,,fiz*(a)),"‘,,z"‘-lz*(w))TWith e Q such that,

£ (7" @,y (7" ()

0 sup E [exp(—gi‘fi‘(a))){l—wi‘+W‘[ ( (T"(a))) [))JH

7' (w)<oo

DE, [CXP(—gi‘l_'i‘*(w)){l—W‘ + [z{A( Y (7" (@) +p }}
And simultaneously,

J (7 @)X (2 @)
0 swp E,, [exp (62" (@) {1- 3" + 7 [ T B7 (X (7 (@) + ﬁ)m ,

2 (w)<oo

VB[ p(-B e @)i- i [ (X (2 @) +5) |
with T9(@)=T"" (@) (Vi #k., i,k =12,.,1) P-as, T (@)=%"(w) (Vi#k, i,
k,=12,..,1,) P-as, E(w)

conditions or information (s,y) and (s,x), respectively.

and E standing for the expectation operators depending on initial

REMARK 2.1: By applying Girsanov Theorem under comparatively weak conditions, the game
between different strategies will become a fair-game after the martingale-payoffs being incorporated
into the game. In this sense, we argue that the corresponding endogenous matching is fzzr. Moreover,
it is easily seen that the endogenous matching fulfills Pareto efficiency as well as individual rationality
(from the viewpoint of strategies).

DEFINITION 1 (Pareto Optimal Endogenons Matching and Induced Nash Equilibrinm): The solution,
if it exists, to Problem 1 defines a game equilibrium, denoted

* ¥ = * k= I % k= * k= r
(¥ 07D (3 P (5 P (0 2))
* ko~ 1% * o~ I % ko~ I, * ko~ r
y (x ,p)D(y (x ,p),""y2 (x ’p),"',y2 (x ’p)) )'
with z "X (y",p)=1 and z *y2*(x", p) =1, induced by stochastic group evolution and rational

1nd1v1dual choice corresponding to very general normal form game situations. Suppose that we are

AL

provided with a Pareto optimal Nash equilibrium denoted by (xD (&,.., 3%, 1M,

OG5, .., 9" )T) with z '%" =1 and zllz 32 =1 in the original normal form game, then we
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arrive at the Pareto optimal endogenons matching by solving the following equations, ie., X (y°,p)=2X
and y'(x",p) =7, and we represent the corresponding Pareto optimal endogenous matching by

(P",P") . Moreover, we call the Pareto optimal Nash equilibrium (X, y) induced Nash equilibrinm (in
some sense) in the current game situations.

REMARK 2.2: Specifically, it is worth noting that there exists intrinsic relationship between the
endogenous matching and the broadly applied random matching (see, Ellison, 1994; Weibull, 1995;
Aliprantis et al., 2007; Duffie and Sun, 2007; Takahashi, 2010, and among others). Notice that the
present endogenous matching could be naturally (to some extent and in some sense) viewed as
certain perturbation of the perfect world with well-mixed population, random matching indeed
represents a special case of the endogenous matching studied in the paper. In other words, if we
suppose that individuals or players play the game in a perfect world rather than a structured society,
random-matching hypothesis is quite appropriate and also random matching itself would be regarded
as endogenously determined, i.e., determined by the corresponding game environment. Generally
speaking, and to the best of our knowledge, random matching is just employed as an exogenous
matching mechanism which does not imply any welfare standard (or implied by any welfare standard)
in existing studies (e.g., Ellison, 1994; Weibull, 1995; Hofbauer and Sigmund, 2003; Benaim and
Weibull, 2003; and Takahashi, 2010, and among others). Nevertheless, as an extreme case of the
endogenous matching studied here, random matching itself indeed yields economic-welfare intuitions
x'(y,p)=%x and

and implications. For example, if we can establish that lim,_,

lim;_, y'(x*,p) =73, we can definitely call the corresponding random matching asymptotically Pareto

¢fficient (or Pareto optimal). As is well known, people live in a structured society and thus random
matching only works as certain limit of the endogenous matching. And random matching will be
supplied with much richer economic intuitions and implications as long as it is studied in a way
intimately related to the present endogenous matching. All in all, game rule is implied by the society
structure’ in some sense and meanwhile the society structure rather implies certain economic- welfare
implication, so our study of endogenous matching indeed deepens existing studies of matching
theory.

2.3. Existence of Pareto optimal endogenous matching

To do this, we now define Z(z) (s+1,X(1)) for Ve, with Z0)0 (s,x)e [ L X [0,1]11 , and
Z) O (s+6,Y(1)) for Ve, with Z(0) [ (s,y)e [, x[0,1]*. And also we let,

VI (5,20 0 (L5, 20000 L (5,200 2 (5,

T
>

7_/11 (X) U (XI7_/111 (lel )’ ’Xilzlll (lell )"”’XIIZIII (ZIII1 ))T’

¢ It should include both spatial structure and division structure of any given mature market.
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VF(5:3) 0 (Z (52 Yoo (5. e 5.)

T
and, 7/12 (y) I (ylyllz (lez) ’y 7/12 (Z;zz) ’ylzylzlz (lez2 )) '
Then the characteristic operators of 7 () and Z(f) can be respectively given by (and < ,~> is used to
denote the scalar product),

R HPE SN ST
+Z uoi{f(s X+7 (X))—f(s,x) <Vf(s X), ;/l(x)>} yh (dz )

v fecCH(DM).

and

Afen=L, y>+2y'2(~TBT) s Z( V(o) e a(a f)< )

+Z [ 37 (s,y+7,2<y>)—f<s, N =(VF (s, 9,7, 0NV (dz),

012

v feci(n"M).

Furthermore, we let z =0, then x" =16, with 0< 8, <1 by noting that 2:1:1 x" =1. Let

1—1

= 5,, then we can get x"'=8-5, with 0<8,<8 <1. Inductively, we let

L--2) ; = i = =
z,l X" =48, ,, then we have x’ =x""" = 5, 3 5,1_2 with 0< 6, , <6, ;<..<6 <1;let
S,

N=(4-2) _ g
I—

_ < . 1 _ <z _ < . <z
x"=6,,, ie, x =6, ,, then we get X =x , =0, , with 0<6, <

2 S 8, , <..< 8, <1. And without loss of any generality, we put &, =1. Then we obtain,

(12,x+p)—eTBT(x+p) ( i1 b12)x +0b, 251 2+z 1211( 11—11_5_11—il+1)+éijBT/_7-

ll—

Similarly, notice that 2:2:1 y? =1 and let zij y? = 51 , then we have y” =14, with 0 < 51 <1.

Let z:: y:=0,, then we see that y?'=4 -5, with 0<3,<3 <1. Inductively, let

I,—(1,-2) prd _ . 3 3
zz Py = 1,2 » then we have y P= ) = 5, 3 5_2 with 0< 6, , <6, ,<..< 6,<1;

i=1

L~(1,~1) - . 1 . 2 _ L(L,-2) _ & ;
let ziz_l y2=06,_, ie, y —5,2_1, then it follows that y° = y2"" —5 ~ —5,2_1 with

0< 5,2 | < 5 , < 5 5SS 5 <1. And we, without loss of any generality, put d, =1. Then we

get,
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I, _
u(il,y+[)) :EIITA(y—i_[)) = (aill _ailz) yl +ai12512—2 +Zai1iz ( I=i _5Iz—i2+1)+EiITAp )

ih=3

Un

Therefore, the discounted fithess functions in Problem 1 can be rewritten as, ]T (s, y' ) = exp(—g i‘s)

i
)
—i | —i 1 S S S =T A =
Xql=w" +w' (aill _aiIZ) y +ai12512—2 + zailiz (512—1'2 _512—1'2+1)’|'eil Ap >
i=3

Vi=12 .1,

f, (s.x')= exp(—é”s)

I _ _

X{l_wiz + Wiz |:(bi21 _bizz)xl +bi22511—2 + zbizil (511—1'1 - 511—i1+1)+ éiZBTﬁ}} 5
=3
Vi,=12,..,1,.(1)

with 0<4, <8, ,<8, ;<..<4,<8,=1 and 0<5, <6, ,<6, ;<..<8,<6,=1. And
inspection of the fitness functions given in (1) reveals that one can just define Z(I) 0 (s+t,X1(t))
for Veel, with Z(O)O (s.x')e 0, x[0,1], and Z()D(s+6,Y'(1)) for VieD, with
Z(0) O (s,yl)e U, X[O,l]. And hence the corresponding characteristic operators of Z(I) and
Z(t) are respectively given by,

Af(s,xl) gfs (s X )+x (e'1 Ay)—(s,xl) +%(x1)2(o_' ) f (s,xl)

+
—
——
\I
—_—
[
<
+
<
=
—_
N
~—
~—
|
\I
A
\_/
‘<
al
—_
AT
~—
2,
—_
h
.\<D—‘
~—
——
~
—_—
&
~—

v fecC(D?).
Therefore, based upon the above assumptions and specifications, the following theorem is
derived,

THEOREM 1: There exists a unique solution to Problem 1 under very weak conditions, and accordingly the
existence of the Pareto optimal endogenous matching is confirmed provided that in the original normal-form game we are

given a Pareto optimal Nash equilibrium (X, , which is given in Definition 1.
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PROOF: See Appendix A. ||

REMARK 2.3: It is especially worth noting that Theorem 1 not only shows the existence of the
Pareto optimal endogenous matching and induced Nash equilibrium given by Definition 1 but also
provides us with the explicit time length needed so that the Pareto optimal endogenous matching and
also the induced Nash equilibrium can be achieved by decentralized players. Moreover, it is also
worth emphasizing that our conclusion holds true for any Pareto optimal strategy combination of very
general normal-form games although we have only considered Pareto optimal Nash equilibrinm in
Theorem 1. For instance, (cooperation, cooperation) is a Pareto-optimal strategy combination in PD
games although it is generally not Nash equilibrium at all. Obviously, our endogenous matching rule
can lead us to cooperation in PD games.

3. Conclusion

In this study, the players follow certain adaptive learning processes while the strategies themselves
are assumed to be rational by applying the classical as f methodology. Based upon this methodology,
it is argued that optimal stopping theory is very useful in establishing the game equilibrium. The
major innovations can be summarized as follows. Firstly, we provide a very general framework for
studying endogenous matching, and those explicit matching mechanisms developed by Haag and
Lagunoff (2006), and Bisin et al. (20006) can be regarded as special realizations of the present model.
Secondly, the well-known random matching (e.g., Gilboa and Matsui, 1992; Ellison, 1994; Weibull,
1995; Aliprantis et al., 2007; Duffie and Sun, 2007; Takahashi, 2010; Podczeck and Puzzello, 2012,
and among others), as an extreme case of the endogenous matching under consideration, yields
economic-welfare intuitions and implications, and the present study provides conditions under which
the random matching is asymptotically Pareto efficient. Thirdly, our study shows a reasonable approach to
combine optimal stopping theory and evolutionary game theory, thereby throwing new insights into
the classical evolutionary game theory (see, Weibull, 1995; Hofbauer and Sigmund, 2003; Benaim and
Weibull, 2003, and among others). Last but not least, noting that certain matching mechanism
implies certain macro-social structure, the present study thus reveals a general existence of the
Pareto-optimal social structure in any given normal-form game situations. In particular, one can
interpret this result from the following viewpoint, i.e., if the purpose of institutional segmentation (or
segregation) (e.g., Schelling, 1969, 1971; Bowles and Gintis, 1998) is to improve people’s welfare in
the same community, then we confirm that there exists an optimal level of segmentation so that the
welfare of the entire community is maximized.

The current paper can be naturally extended in the following ways: first, asymmetric information can
be introduced into the present model to capture much more economic implications, for instance, one
can explore the value of information with respect to the endogenous matching; second, the classical
stochastic differential cooperative game can be explored based upon the present framework; third,
specific mechanism, say, reputation mechanism (for example, see, Anderson and Smith, 2010) or
searching mechanism (e.g., Eeckhout and Kircher, 2010, and references therein), can be incorporated
into the model to support any other pattern of endogenous matching; forth, our approach can be
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easily extended to include multiple priors (see, Riedel, 2009, for instance) and also to explore the
evolutionary equilibria on graphs (see, Ohtsuki et al., 2007, and among others).
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Appendix

A. Proof of Theorem 1

We proceed the proof as follows. In Step 1, we derive the optimal stopping rules (and also the
corresponding supporting conditions) for strategies 7, i, =1,2,...,1,; in Step 2, we similarly establish
the optimal stopping rules for strategies i,, i, =1,2,...,1,; and in Step 3, we show (by solving a group
of equations) that strategies i, i, =1,2,...,1,, can cooperate to the same optimal stopping rule given

the optimal stopping rule of strategies i,, i, =1,2,...,1,, and vice versa. About the optimal stopping
theory used here, one can refer to @Wksendal and Sulem (2005) for much more details.

STEP 1: For strategy i,, V i, =1,2,...,1,. Notice that,
Afil (s, yl) =@ exp(—gi‘s)

I
—i |, =i 1 N Y $ ST AR
X{l_wl +w! |:(aill _ailz) y +ai12512—2 + zailiz (512—1'2 _512—i2+1)+ei1 AP}}

=3
+y' (&' B x)exp(-8"s)W" (a,, —a,,) >0
& (éfBTx—gi‘ )W‘ (ai11 —ailz) y'

I,

>0 (1— wh )+ 0w {ailzéz_z + zailiz (512—i2 - 512—i2+1 ) +EilTAp} )

ih=3

5 (1-7 )+ 8 {ailzg,z_z S I S I Aﬁ} <0

Case 1.1: ih=3
sgn(é/B'x-6")=sgn(a,,-a,))

Then, Af, (5,5')20
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g (1-w'")+8"w' [a ot >a (8, 5,2_i2+1)+z{ApJ
(élTB X— 0 ) ( ill_aiIZ) .

Hence, we have,

g (1-")+ m[ 8 a3 4 (5, 5,2_i2+1)+z;Ap]

U' = s,y1 ;ylé = . (A
o) (787281 (0.
And it is natural to guess that the continuation region D" has the following form,
D (yy)={(s.»"):05 ¥ <57}
where,
yil* > gil (1_Wil )+ gil Wil |:ai125‘12_2 + 21'122:3 ailiz (Slz_iz _5‘12_1'2"'1 ) +EllTAﬁ:| ' (AZ)

i T pT i\ =i _
(elB x—60 )w (aill ailz)

Notice that the generator of Z() is given by,

- 0 00, 2 T .
A (59)= 2y (1 70) S () ()

+J.u Z{ (s y oy 7’1,2 Z, ) (gil(s,y )—ylﬁlz(z}z)zij(s,yl)}v}z(dz}z)

0 p=1

for ‘v’(;il (s, yl) ( ) If we try a function ¢ of the following form,

é(s,yl)=eXp( -6" s)( )/1 for some constant A" e[ .

We then get,

where,

B (20)0-8" + (el B7) 2+ (6') 671 (71 -1)

)
+f z{[wﬂ )] _1_71,2(52)21'1}%1 (d2!).

0 p,=1

o

Note that, f_lil (D =el Tx—0" and lim h1 ( ) oo,

21 00

Econ Res Guard 217 2012



The Economic Research Guardian — Vol. 2(2)2012
Semi-annual Online Journal, www.ecrg.ro
ISSN: 2247-8531, ISSN-L: 2247-8531
Econ Res Guard 2(2): 201-224

Therefore, if we assume that,

¢/B"'x<0", (A.3)
Then we find that there exists 4" >1 such that,
R (71)=o0. (A4

with this value of 1" we put,
Si— 7 .
eig xCl](yl) ,OS)’IS)’;}

. 1N S $ S
e {1 W+ {(a,}l —ai,z)yl +ai,2513—2+zai1iz (‘512—1‘Z _512:‘2+1)+Ei,TA/5}}’y;* <y <l

=3

g, (s.5')=

for some constant C" >0, to be determined. We, without loss of any generality, guess that the value
functionis C' at y' = y;* and this leads us to the following “high contact” conditions,

5i1 (ylll* )/Til =1- Wil + ‘/_Vil |:(ai11 - ail2 ) ylll* + ailzglz_z + Izzailiz (Slz_iz N 5‘12_5"'1 ) +EllTAﬁ:|
i=3
(continuity at y' = y;*)
2 .
C'2'(y)  =w"(a, —a,,) (differentiability at y' = y,")

Combining the above equations shows that,

éil (ylll* )Zil _ - Wil + Wil |:(ai11 _ail2 ) ylll* +ai125 212_3 iyiy ( =i, _5‘12—1'2+1 ) +EllTAﬁ:|

=i 7 () wia. —a
C lﬂ« ! (yl ) il 02
1

i =i, =i 1N L S 3 —T 4 =
1 —_ 1 1 —
A {1 W'+ w [%2512_2"‘ E s i (512_1.2 51,2_1.2+1)+ei1 Ap}}

M= A.
= (1—2"1)»7’1 (aill—ailz) B)
And this gives,
& P laan) "
= ( ” )/11—1 ’ (A.0)
Y

1

Hence, by (A.4), (A.5) and (A.6), we can define, Z (s, y' ) 0 exp(—gi‘s)ai‘ (yl)/]L . And then we are

in the position to prove that,
T (s Dexp(-8%5) () =7 (5:9").
in which ]7: (s, yl) is a supermeanvalued majorant of ]7 ( ) . Firstly, noting that,

Af, (s, yl) =9 exp(—ﬁ”s)

12
—i | —i 1 S S S =T A~
X{l_wl +w |:(aill _ailz) y +ai12512—2 + z :ailiz (512—1'2 _512—i2+1)+ei1 AP}}

i=3

Econ Res Guard 218 2012



The Economic Research Guardian — Vol. 2(2)2012
Semi-annual Online Journal, www.ecrg.ro
ISSN: 2247-8531, ISSN-L: 2247-8531
Econ Res Guard 2(2): 201-224

+y' (&' B"x)exp(-8"s)W" (a,, —a,,) <0, Vy' 2 y".
= (éfBTx—gi‘ )W‘ (ai | —ailz) y'

1

i=3

A (1—Wil )+§i‘ W' |:ai12512—2 + Izzailiz (512—i2 _5‘12—1'2+1)+EHTA’5} VY2 y’i*'
+

iy i i =i 2
L0 (1 w ) 6"w [ai125,2_2+ E s i,

5,
Sy 2 (

1,—i, _512—i2+1)+EiITAﬁ:|
(élTBTx—gi‘ )W‘ (aill —ailz) '
which holds by (A.2). Secondly, to prove,

Ch (y1 )TA1 >1—w' +wh {(aill —a;, ) v+ ailzglz_z + ia% (5‘,2_1.2

=3

- 512—i2+1 ) + EleAﬁ} >

for VO< y' < ylll* Define

— a

Ei(y)oci(y) -1+

12
=i _ 1 N N
w {(aql aiIZ)y +ai12512—2 + 2 ,ai1i2 (512—1'2

i=3

- 512—i2+1 ) +EleAﬁ} .

Then with our chosen values of C' and A%, we see that & (y;*): E i (y.l*):O. Furthermore,

— —_- = 7
noting that &" (y1)=C"/1" (/1" —1)(y1) ’
given A">1in (A.4), that is, é? ; (yl) >0 follows for V 0 < y' < y;*. And this completes the short
proof.

, and hence é?i‘”(yl)>0 holds for VO<y' Syl.l*

o' (1-w' )+ 0w {“ngzz—z + i a, (6,6, ..) +E{Aﬁ} >0

Case 1.2: =3
sgn(&/B'x—6")=sgn(a,, —ailz)
It is easy to see that the proof is quite similar to that of case 1.1, so we take it omitted.
STEP 2: For strategy i,, V i, =1,2,...,1,. Notice that,
Af, (s.x')=-6" exp(—é”s)
X{l_ Wiz + Wiz |:(bi21 _bi22 ) xl +bi225‘11—2 + Izlbizil (5‘11—1'1 - 5‘11—1'1+1 ) + éiZBTﬁ}}
=3
+x' (EITAy)exp(—éizs) e (bi21 -b,, ) >0
= (EITAy -6~ ) e (bi21 -b,, ) x'
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Case 2.1 =3
sgn(e1 Ay 49"2):sgn(b2 bl)
Hence,
Afz(s,xl)ZO
éz(l_w)mzw{b23,_2+213 (5, -5, H)+eTBTp]
o x' < S = llf_ -

Then, we have,
; éiz (1 ) é ‘X/’ |:b 51 2+zll 3 21( 1=y é_‘ll_i1+1)+élZBTﬁ:|
U- = (s,xl);xls . (A7)
(a7 Ay-6")w" (b, -b,,)
So it is natural to guess that the continuation region D® has the following form,

D" (x;* ) = {(s,xl);O <x'< xl.lz*} where,

6" (1= )+ 0% | 5,8, o+ 21 b, (8, =8, )+e B P
(" Ay-6")#" (b, ~b,,)

X (A8)

Notice that the generator of 7 (t) is given by,

o (@) S ) () 7

o ”z‘{éz(s,xwm<zz>>—¢zz<s,xl>—xlz,l<zz>%<s,xl>}vz (d))
07 =1

=

Ag, (5.4')=

in

for V(Ziz (s,xl)e C’ (D 2). If we try to choose (Ziz (s,xl)=exp(—l§i2s)(xl )/1 for some constant

A2 e[ . Then we get,
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—exp(-6°s)(x')" i, (7°).
where,

i (1) -8 +(@ ) B30 ' (2 )

A S @] - ()2 )

Noting that, &, (D= e’ Ay—6" and lim h, (/1’2) oo . Consequently, if we suppose that,

A2 500
e Ay<6”, (A.9)
Thus, it is easily seen that there exists A" >1 such that,
h (A%)=0. (A.10)
with this value of A* we put,
e Ch (xl )ﬂ’z ,0<x' < xi'_*

@ s,x' )= -
() eg’“{l—wfszz {(b 2) X +D,,0, 2+Z b, (5, -9, ,]+l)+éijBTp}},x;ij's1

=3
in which C” >0 is some constant that remains to be determined. If we require that ¢, is continuous
1 _ 1 . .
at X =x, we get the following equation,
& () 21—k + (b, -5, +b,,0, ,+ (8,.,—0,..)+e'B'p|, (A1
‘xi2 - w w ih2 x12 i,2Y1 -2 z iy 1,—i, I —ij+1 ( )
=3

If we require that éz is differentiable at x' = x,l* we get the additional equation,

C A" (x! ) g (b,,=b,,)- (A.12)

I

So, combining equation (A.11) and equation (A.12) yields,
i i i ® < ~ -
c: (xll:) 1-w" +w" |:(bi21 b, 2)x1 +b1 251 2 +z, 3%, ( L _511—i1+1)+€£BTp}

é. Z ( )/12—1 - v’{}lz (bi21 _bizz)
A {1 We |:b1 251 2 +z 390 ( jan _gll—i1+l)+éiZBT/_):|}
X = : (A.13)
(1=2% )" (b,1=b,.)
And this produces,
cn :M_ (A.14)

A" (x.l* )/12_1

b
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Then, by applying equation (A.10), equation (A.13) and equation (A.14), we are in the position to
i

prove that };L: (s,xl) =exp(—éi2s)éi2 (xl) is a supermeanvalued majorant of fiz (s,xl). Firstly,

noting that,

Af, (s.x')=-6" exp(—é”s)

X{l_wiz + wiz |:(bi21 _bizz)xl +bi225‘11—2 +Izlbizil (5‘11—1'1 _5‘11—1'1+1)+é;BTﬁ}}

i=3

+x' (EITAy)exp (—éizs) w2 (b, X —bl,22 ) <0, Vx' > x;:

b

= (EITAy _éiz )ﬂ’iz (bi21 _bizz)xl
<" (1—Wi2 )+éi2ﬂ/i2 |:bi225‘11—2 + ibizil (é_‘ll—il _5‘11—1'1+1)+éijBTﬁ} , Va2 x)

=3

éiz (1_ ‘7{}12 )+ élz ‘7{}12 [l)iZZSII_2 + 21,1173@21»1 (gll_il - gll_il"'1 ) + élZBTﬁ}
- v

1
ex= (" Ay-6")w" (b, ~b,,)

a (I_WZ )+éi2W2 [bi 9,2 +z{l—3bii (gl—i _5}—1'+1)+e~'iTBTﬁ}
<:>-X_ll>s 2 2 1 _ l{— 24 174 1—h N
) (EITAy_elz)wlz (l)izl—l)izz)
which holds by (A.8). Secondly, to show that,

;=3

& ()" 21—+t {(b&1 ~b,)x' +b,,3, , +ib,»z,»l (8, —311_,»1+1)+5§BT/5} :

for VO<x' <x;". Define

—w" |:(bi21 _bizz)xl +bi225‘11—2 + Izlbizil (511—1'1 - 5‘11—1'1+1)+ éjBTﬁ} :

Then with our chosen values of C* and A%, we sce that 51'2 (xl.l:)= 5”2' (xil:)=O. Furthermore,
. Ei” (1 Siy 3y (7 142 Ei” (.1 (PR U
noting that &" (x )=C2/12 (/12 —1)(x ) , and hence &"” (x )>O holds for VO<x <X given
A2 >1 in (A.10), that is, 5i2 (xl)>0 follows for VO<x' < x}:. And hence the desired result is

established.
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éiz (1— w2 )-l— éizﬂ}iz bizzgll_z + Izlbizil (g}l_il _é_‘ll—i1+l)+ éZBTﬁ >0
Case 2.2: i=3

sgn (ngAy - 6" ) =sgn (bi21 - bi22)
We take the proof of case 2.2, which is quite similar to that of case 2.1, omitted.
STEP 3: The existence of the Pareto optimal endogenous matching,.
It follows from the requirements of Problem 1 that y" =y, =..=y'=..=y, with y
defined in (A.5). Let yi* = y,il (Vi, #k, i,k =1,2,...,1,), then one can easily see that,
X ,23512—2 +2 ,34512—3 Tt Zilkl,lz—l,lzé‘l =T
where,

iy jo ail sJatl )

_ Al (a Ak (ak h ‘+1)
Zilkl»jz»fz"‘l i 74 - Tk N - ’
(-2 )ai-as) (1=2")(a,-a,.)
o L0 (o + e ap)] 2| (1-) i (o, -2 49)]
(1-2) (@, —a,. ) #* (1-2") (@, —a ) ¥
Vi #k,, ik =120 j, =231, 1.

Accordingly, we have,

Z12,23 Z12,34 Z12,12—1,12 1,-2 r,
Yosos Yosa Yosnin, 1,-3 | T
T by o ¥ 5 r
_211—1,11 23 Z11—1,11 34 Z11—1,11,12—1,12 di-iw-2) L 51 di-2pa h=L -
which implies that,
0=XT. (A.15)
where “+”” denotes Moore-Penrose generalized inverse.
. . 1% 1% 1% 1% . 1% . .
Similarly, we obtain x’"=x, =..=x =..=x with x defined in (A.13) according to

Problem 1. Now, let x}: = x,z (Vi, #k,,i,,k, =1,2,....1,), then we get,
Z"1'21<2,235L—2 +X, k2,34511—3 +..+ Zizkz,ll—l,ll 6, =T,

iy ipky *

where,

- A" (bizjl _biz,j1+l) At (bkzjl _bkrfl“)

D 7 '
2k i i+ (1_112)(bi21—bi22) (1—ﬂvk2)(bk21_bk22)

- DZkz[(l—wkz)mkz(bkz,l+észBTp)} ZiZ[(l—wi2)+vT/i2(bi2,1+éifBTﬁ)J
i (1-2%)(b, — by, )W (1-2°)(b,, —b,, ) W" '
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Vi, #ky, ik, =1,2,0 1,5 j, =231 —1.

Consequently, we obtain,

Z12,23 Z12,34 Z12,11—1,11 511_2 r,
Y33 Y3 Los, -3 | T
_212-1»12»23 212—1»12»34 212‘”2”1“”1 d-Hx-2) L 9 -2 b7t daty-ipa
which leads us to the following equation,
o=XT. (A.10)

where “+ 7 stands for the Moore-Penrose generalized inverse.

Consequently, by equations in (A.16) and (A.15), we get y** = 5,2_2 -y, Yy = 5,2_3 - 512_2,
R N S O S S e,
=.= yi* =..= y}l and X" =x"=x,=..= X, =...= x}z So, we obtain the corresponding game

equilibrium, denoted by
(¥ 0P (37 P ¥ (3 B x5, )

T
5

YT (5B (8 Py ()

with zzl x(y",p)=1 and z: y2*(x", P) =1, but noting that this game equilibrium may not be
the Pareto optimal equilibrium of the original normal form games thanks to the stochastic factors,
and this is why we need to choose approptiate values of p and P such that the original Pareto
optimal Nash equilibrium (X, §) will be definitely chosen by the players.

To summarize, we get the following theorem,

THEOREM 1: If we are provided that the following inequalities hold, that is, & B x < 0" in (A.3) and
e/ Ay < 0> in (A.9), then Problem 1 is solved as long as we have 6=XT in (A15) and 6 =X°'T in (A.16).
That is to say, the existence of the Pareto optimal endogenons matching is confirmed just via putting x (y", p) =X
and Y (x", )=, in which (X,3) is the given Pareto optimal Nash equilibrinm in the corresponding normal

Sform games.
Therefore, Theorem 1 is established thanks to Theorem 1°. I
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