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Abstract

In the current paper, a dynamically complete financial market with finite and countable heterogeneous investors has been
constructed. Self-dynamic game is defined, that is, the investors determine the optimal bankruptey time first, and then
the optimal portfolio policy. Sub-game perfect Nash equilibrinm bankruptcy time is derived and it is confirmed that
there exists a unique value of efficient terminal wealth for each investor. The interesting theorem of the current paper
proves that the vector of efficient terminal wealth exhibits neighborhood turnpike property if the corresponding optimal
path of wealth accumulation is a martingale for each investor. This result wonld be regarded as an interesting
neighborhood turnpike theorem in mathematical finance because it focuses on terminal wealth accumulation of the
investors which indeed plays a crucial role in mathematical finance. And it also provides us with an internal\intrinsic
and a simple relationship between fairness and efficiency characterizations of the modern financial-market institutions.
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1. Introduction

As is well-known, when discussing efficient capital accumulation (see, Gong and Zou, 2000, 2002;
Ray, 2010, and among others) in macroeconomics and turnpike theorem (see, McKenzie, 1976, 1998,
and among others) in mathematical economics, efficiency is usually defined with reference to the
final state (see, Radner, 1961; Kurz, 1965; Dai, 2012, 2013, and among others) or the terminal stocks
(e.g., McKenzie, 1963, 1976). Similarly, in most mathematical-finance models (see, Merton, 1971,
1973; Pliska, 1986; Kramkov and Schachermayer, 1999, 2003; Touzi, 2000; Cvitani¢ and Wang, 2001;
Schachermayer, 2001; Pham and Quenez, 2001; Brennan and Xia, 2002; Owen, 2002; Hugonnier and
Kramkov, 2004; Schied, 2005), expected utility maximization problem is often specified with respect
to the terminal wealth of the corresponding investor in any given complete or incomplete market.

Econ Res Guard 86 2013


mailto:daidarong998@163.com

The Economic Research Guardian — Vol. 3(2)2013
Semi-annual Online Journal, www.ecrg.ro
ISSN: 2247-8531, ISSN-L: 2247-8531
Econ Res Guard 3(2): 86-110

Nevertheless, most of existing literatures (e.g., Pliska, 1986; Touzi, 2000; Pham and Quenez, 2001;
Owen, 2002; Kramkov and Schachermayer, 1999, 2003; Schied, 2005, and among others) share the
common setting of an agent who maximizes the expected utility of her pre-specified terminal wealth up
to a pre-specified terminal time.

However, in reality, especially in financial market, both the terminal time and the terminal wealth are
endogenonsly determined, which actually throws new insights into our understanding of the
microeconomic behaviors of the investors relative to the case where both the terminal time and the
corresponding terminal wealth are exogenously given. Therefore, provided the above considerations,
the current paper, along the same line of Karatzas and Wang (2001), Jeanblanc et al (2004), Oksendal
and Sulem (2005) and Dai (2012), considers the case with endogenously determined terminal time,
which would be translated to the category of financial economics, i.e., an optimal bankruptcy time in
certain sense. Moreover, the current paper defines a self-dynamic game of the investors, that is,
investors determine the optimal bankruptcy time first, and then the optimal portfolio policy, which
thus results in a sub-game perfect Nash equilibrium bankruptcy time by using the famous backward
induction rationality principle that is widely employed in dynamic non-cooperative game theories,
thereby extending the framework of Karatzas and Wang (2001), Jeanblanc et al (2004), Qksendal and
Sulem (2005) and Dai (2012). This may be regarded as the first innovation of the current paper.

The major and also interesting finding of the current paper is that the vecfor of the endogenously
determined terminal wealth level for all heterogeneous investors exhibits neighborbood turnpike property
if the corresponding wealth dynamics is a martingale for each investor, respectively, which can be
achieved by the well-known Girsanov Theorem in most cases. And this would be regarded as the
second contribution of the present model. Noting that neighborhood turnpike theorem (see, Bewley,
1982; McKenzie, 1982; Yano, 1984a, 1984b, 1998, 1999; Marena and Montrucchio, 1999; Guerrero-
Luchtenberg, 2000; Sahashi, 2002; Kamihigashi and Roy, 2007; Kondo, 2008; Dai, 2012) as well as
asymptotic turnpike theorem (e.g., Scheinkman, 1976; Brock and Scheinkman, 1976; Araujo and
Scheinkman, 1977; Yano, 1984c, 1985, 1999; Sahashi, 2002; Dai, 2012, and among others) plays a
crucial role in optimal growth theory, the neighborhood turnpike theorem proved in the current
paper would be seen as an extension to some extent and thus a natural correspondence in financial
economics compared to existing studies focused on macro-economics, in particular, optimal growth
theory or capital accumulation theory in dynamic general equilibrium economy (e.g., Becker, 1980;
Bewley, 1982; Yano, 1984a, 1984b, 1985; Coles, 1985; Nishimura and Shimomura, 2002, and among
others).

Finally, noting that market selection theory (e.g., Blume and Easley, 1992, 2006; Luo, 1998; Sandroni,
2000; Chiarella and He, 2001; Chiarella et al, 2006, and among others), specifically wealth-driven
selection theory (see, De Long et al, 1991; Anufriev, 2008; Anufriev and Dindo, 2010; Brianzoni et
al, 2012, and among others), plays a more and more important role in both financial economics and
evolutionary economics, the present investigation would in certain sense provides us with some new
inspirations to existing approach from the viewpoint of wealth dynamics and its mathematical
properties in a type of complete market with discretionary stopping time and heterogeneous
investors as a whole.
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In other words, when sub-game perfect Nash equilibrium bankruptcy time is defined for all
heterogeneous investors, we then are led to the robust conclusion that the endogenously determined
terminal wealth is indeed the stationary state of the optimal path of wealth accumulation for each
investor if the optimal path of wealth accumulation exhibits martingale property, that is, the optimal
path will spend the most time staying in the arbitrarily small neighborhood of the efficient terminal
wealth, which is also a constant thanks to the optimal stopping theory of continuous time.
Accordingly, wealth-driven selection theory can build on the above efficient terminal wealth, a
constant, rather than the whole path, a stochastic differential equation (SDE). And we intuitively and
heuristically argue that market selection theory based upon constant efficient terminal wealth will be
a good approximation to that based on the whole path of optimal wealth accumulation by noting that
the Lebesgue measure of possible loss or error would approach zero in infinity. Obviously, our
approach makes things much easier. And we leave much deeper issues about market selection theory
for future studies.

The present paper proceeds as follows. Section 2 presents the general model where the basic
definitions and assumptions about the complete financial market facing heterogeneous investors are
introduced; section 3 solves the casual individual optimization problem by using classical technique
of dynamic programming and then optimal portfolio policy is derived; section 4 confirms the
existence and uniqueness of the sub-game perfect Nash equilibrium bankruptcy time based upon the
results given in section 3; section 5 proves the key theorem of the current paper, that is,
neighborhood turnpike theorem of the vector of the efficient terminal wealth provided the results
given in sections 3 and 4. There is a brief concluding section. All proofs, unless otherwise noted in
the text, appear in the Appendix.

2. The general model

Suppose that there are | heterogeneous investors in the underlying market. We denote by
Q" F™" LR} P™)) the filtered probability space with F™" = {F¥"} the

p(W')

o<t<r' ()’ o<t<r' (@)
—augmented filtration generated by the following d —dimensional standard Brownian motion
i ~ wh _ pwh) i - i ine t w'

W t)},.... » with ™7 =F] @ where 7' (@) is a given stopping time for @ € Q™ ’. Moreovert,
we define,

N'(dt, dz) = (N1(dt, dz,),..., Nn(dt, dz,))" = (N/ (dt, dz,) — v/ (dz,)dt, .., NI (dt, dz, ) — v/ (dz, )dt)" ,

where {N,i}lr':1 are independent Poisson random measures with Lévy measures Vli coming from N
. ) , t i : t i

independent  Lévy processes, 7] (t)= [ IRO 2, Na(ds,dz,) ..., B(H)=], jRO z,Nn(ds,dz,) , where
R, =R —{0}as the usual definition, and therefore the corresponding stochastic basis is given by

(Q(Ni), F(Ni),{Ft(Ni)} P(Ni)) with E) E{E(Ni)} the PN —augmented filtration with

o<t<r' ()’ o<t<r' (@)
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FNM=F™ for pe) Therefore, we are provided with a totally new stochastic basis

' (@)

@, F' {F} P, where Q' =Q")xQ™) | Fi=p"gF®)  E =W QEN

o<t<r' (w)’
P =P") @PMN) and F E{Fti}oggri @ and also the undetlying probability measure space is
assumed to satisfy the so-called “usual conditions”. Here, and throughout the current paper, E' is

used to denote the expectation operator with respect to (w. r. t) the probability law P'
for Vi=12,...,1 . Accordingly, we have the new stochastic basis (Q,F,{Ft}ogtg(w),P) with

Q=0'%..xQ', F=F'®..0F' , F=F'®..0F', r(w)=r(®)Vv..vr'(w) for VoeQ,
P=P'®..®P', IEE{FI}OStSr(a)) denoting the corresponding filtration satisfying the usual

conditions, and E denoting the expectation operator w. t. t. the probability law P .

We define the canonical Lebesgue measure g on measure space (R, ,B(R,)) with R, =[0,0),

R., =(0,0) and B(R,) the Borel sigma-algebra, and also the corresponding regular properties
about Lebesgue measure are supposed to be fulfilled. Thus, we can define the following product
measure space (' xR ,F'®B(R,)) and (QxR,,F ®B(R,)) with corresponding product measure

U® P' and URP | respectively, for Vi=12,...,1.

Now, based upon the probability space (€', F',F',P"), we define the dynamically complete market
(see, Anderson and Raimondo, 2008, for example) as follows,

dB(t) = r(t)B(t)dt, B(0) =1.

dsi(t) = S}(t){b} (t)dt+iajk (t)dw; (t)+zn:jR 7a(t, zI)N:(dt,dz,)},S}(O) ~0. (7

where B(t) denotes the price process of a safe or riskless investment, i.e., bank account, and S} (t)
denotes the price process of a risky investment, for instance, the stock, for j=12,..,m and
Vi=12,..,1. And r(t), b} (t), o4 (t) € R denote the riskless interest rate, the expectation return
rate of the stock and the market volatility in periodt, respectively, for Vi=12,..,1; j=12,...m
and k=1,2,...,d . In particular, if we let bj (t) represent the true value of market mean return of
stock ], then we get Ei[bj M|F1= b} () > (res. = or <) b;(t) if individual i is an optimistic (res. a
rational or a pessimistic) investor, which reflects heterogeneous beliefs in the underlying financial
market for Vi=12,..,1 and Vj=12,...,m. With a little abuse of notations, we put r=r(0),
bi =b{(0), oy =0, (0) and y;,(2)=7;(0,2) for Vi=12,..,1; j=12,...m; k=12,..,d and
I=12,..,n. Moreover, all the above processes are supposed to be F ®B(R, ) — progressively

measurable. Then we have the following SDE of wealth accumulation,
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dX'(t)= X' (t){zfj“_l;z; (t)%+(l—2?ﬂﬂ'} (t))r(t)dt}
= X' [ 7' O (0'®) - r)D) +r(t) [dt+ X' ®)7' () o®)dW' (t)
X ()7 @) jRO #(t, 2)N'(dt, dz) | 2)

.., WI(0)=(0,..,0)" P'—as., and we denote by
7' () = (7 (t),..., 7. (1))" the portfolio policy. And as usual, we put b'(t)=(b(t),...,b. ()",
1=1L...)", W)= W, (t),...W, ()" , where the superscript “T ” denotes transpose, and
ot)=(o; (1) e R™? . »(t,z) = (7;(t,))) e R™ denote bounded matrices. As before, we set up
the initial conditions 7' = 7' (0) = (7, (0),..., 7. (0))" , b' =b'(0) = (b (0),...,b' (0))" =(b/,...,0} )",
o=0(0)= (O-jk 0)) = (ij) and also y=y(0,2)= (7j| 0,7)) = (7j|(z|)) for Vi=12,.,1 ;
1=12,...m; k=12,..,d and | =12,...,n. Furthermore, the wealth dynamics Xi(t) is assumed

subject to the initial conditions X'(0)=x' €R

to be F'®B(R,)— adapted and all the remaining processes are F'®B(R,)— progressively

measurable, for Vi=12,...,1. When denoted in matrix form, we get,

dX (1) = f (X (©)dt+g(X (£))dW () + jRO h(X (t), Z)N(dt, dz), 03)

where X (t) =(X'(t),... X' (t))" , X(t) is assumed to be F®B(R,)— adapted and f(X(t)),
g(X(t)), h(X(t),z) are supposed to be F ® B(R, ) — progtessively measurable.

Now, as a preparation for proving our propositions and the key theorem, we, as usual, provide the
following formal assumptions and definitions,

ASSUMPTION 1: Here, and throughout the current paper, the real symmetric matrix %(t) = o(t)o(t)" is
., Vi=12,...m and
1 =1,2,...n, and we It ' () =b' () —r(t)L e R, u®P' —ac for Vi=12,....| . Moreover, with a little
abuse of notations, we put X =%(0)=c(0)o(0) =00 and @' =0'(0)=b'(0)-r(0)1=b'-r1 Sor
vi=12,..,1.

assumed to be bounded and invertible, 'y (t,z)) > -1+¢ ,u®vli —a.s. for Ve €R

REMARK 1: It is worth emphasizing that @' (t) e R,, #®P' —a.e. is just for the sake of simplicity

and indeed without loss of any generality by noting that it does not essentially restrict our following
turnpike theorem. Obviously, this assumption can be relaxed to imply much more cases at the cost
of much more complicated computations.

ASSUMPTION 2: The initial conditions of the wealth processes Xi(O) =X e R, (Vi=L12,...,1) and
X(0)=xeR,, are all supposed to be deterministic and bounded.
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ASSUMPTION 3 (Preference): It is assumed that all the investors exhibit log preference (special CRRA
preference) w. r. 1. terminal wealth.

REMARK 2: First, it is well-known that constant relative risk aversion (CRRA) utility function such
as the well-known log preference has been broadly employed in both macroeconomic and financial
models (see, among others, Dai, 2012, 2013; Dai et al., 2013; He and Krishnamurthy, 2012; Goll and
Kallsen, 2000; Pang, 2006) owing to the tractability of the corresponding optimal solutions and also
without loss of any generality in most cases. Thus, the current paper also employs CRRA preference
but not other types of utility function, say, constant absolute risk aversion (CARA) preference.
Second, empirical studies (see, Brunnermeier and Nagel, 2008) have confirmed that CRRA model
provides us with a good approach to study microeconomic behaviors in reality. Third, noting that the
key issue of the present paper is turnpike property of wealth dynamics, the proof of our major
conclusion, indeed, is robust to the specification of utility functions. To summarize, Assumption 3
just plays a role of technical condition to make things much easier, in other words, the current model
can be naturally extended to include very general preference functions while the major claim still
keeping invariant.

Now, we need the following definitions,
DEFINITION 1 (Self-Dynamic Game): I7 is supposed that the order of action of investors proceeds as follows:

Step 1: They choose an optimal bankruptey time, i.e., an optimal stopping time, given any optimal portfolio policy.
That is, they first determine the time-dimensional control variable.

Step 2: Given the optimal bankruptcy time derived in Step 1, they choose an optimal portfolio policy, that is, determine

the space-dimensional control variable.

And we denote by T' (X' (t)) the self-dynamic game defined above for ¥i =1,2,...,1 .

Why will we especially impose the self-dynamic game structure on the investors in the present
financial market? On the one hand, notice that we will employ the concept of sequential rationality to
derive the optimal bankruptcy time in the following discussion and also as you can see below that
our major result mainly depends on the optimal bankruptcy time rather than the optimal portfolio
policy, we give the special self-dynamic game in Definition 1 to naturally establish the sub-game
perfect Nash equilibrium bankruptcy time in the following definition; on the other hand, as clearly
stated in Introduction, many studies derive optimal portfolio policy in models where the terminal
time or the bankruptcy time is already pre-specified, that is, they have in fact implicitly assumed that
the terminal time or the bankruptcy time is determined (although there it is exogenous) before the
determination of optimal portfolio policy, and it is in this sense that we argue that the present model
is indeed compatible with existing work and it further extends the existing literatures by introducing
the interesting self-dynamic game in Definition 1 into the decision process of the investors. What’s
more, it is particularly worthwhile mentioning that such kind of self-dynamic game structure is not at
all new in existing economics literatures. For example, similar specification has been sufficiently
employed in modern consumption theory (e.g., Amador et al, 2006, and references therein).
Nevertheless, it is the first time, to the best of our knowledge, for us to incorporate such game
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structure into mathematical finance to capture much more interesting background stories. Naturally,
we then formulate the corresponding game equilibrium,

DEFINITION 2 (Sub-Game Perfect Nash Equilibrium Bankruptcy Time): Given the self-dynamic game
C(X'() (Yi=12,...,1) defined above, the following algorithm of computation is employed with the help of

backward induction rationality principle, which is widely used in dynamic non-cooperative game theories,
Step 1: Investors determine their optimal portfolio policy for any given bankruptcy time.

Step 2: Based upon the results given in Step 1, optimal bankruptey time is derived and hence we name it sub-game
perfect Nash equilibrium bankruptey time, which is denoted by t"* (@) for Voo € Q' and ¥i=1,2,...,1.

REMARK 3: It is obvious that one can determine the optimal time-space policy simultaneously from
the viewpoint of pure mathematical technique (see, Oksendal and Sulem, 2005). It is, nonetheless,
widely noticed that investors in reality generally do not determine their optimal bankruptcy time and
optimal portfolio policy simultaneously. This phenomenon may be partially explained from the
following viewpoints: first, people are usually not used to the way of determining time-space control
variables simultaneously because the optimal decisions of time dimension and that of the space
dimension in general share totally different properties or characteristics, most importantly, as already
noticed by the literatures of endogenous longevity (see, Chakraborty, 2004; de la Croix and
Ponthiere, 2010, and among others), it is reasonable to argue that the longevity of the time
dimension and the consumption or investment of the space dimension are closely related to each
other, that is, individuals’ optimal consumption or investment will be correspondingly changed or
modified as long as they are definitely informed that their longevity has been increased or decreased,
and you can easily see that this basic logic also applies here and our approach relying on the above
self-dynamic game to some extent successfully avoids such kind of complex interactions between the
control variable of time dimension and that of the space dimension; second, acting like this will
definitely bring us high cost of computation when noting that people prefer simple rules-of-thumb
strategies (e.g., Ellison and Fudenberg, 1993) in reality. Most importantly, our definition actually
implies much richer background stories and economic logics.

DEFINITION 3 (Markov Admissible Strategy): We call the control ' (t) €[0,1]" Markov admissible
strategy #f it is time-consistent and also the corresponding wealth process X 't,w) eR, u®P' —ac. and then we
define  the set of Markov admissible strategy as A Jor ¥Mi=L2,...,1 . Moreover, we define
T ={ F'— stopping times} with the corvesponding element (@) , F'— predictable Jor NoeQ' and
Vi=L12,....|, representing the adnissible bankruptcy time.

Finally, we give some mathematical notations that will be used in the following proofs. For any

vector XeR', we give the norms, || X|l,=] X, [+|%, [+..+]% |, |l X”zE\/l X+ % P+ X,
|| x]l,= {max; | x |;i=12,..., 1}, where | X, | denotes the absolute value of X, for Vi=12,...,1.
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3. Optimal portfolio policy

In particular, in the present paper, we just consider the case where the consumption process is
omitted. This is to make things easier on the one hand, and also to focus on the optimal wealth
dynamics on the other hand. Therefore, by Assumptions 1 and 3, the individual optimization
problem facing investor I reads as follows,

max J'=E [e”’i(fi’s) log Xi(ri)}, “)

' (t)eA (s.x')
S.t.

dX'(t) = X' 7' @) O' (1) +r(t) |dt+ X' (t)7' ©)" o(t)dW' (1)
X ()7 @) jRO #(t, )N (dt, dz)
X'(0)=x">0, P' —as. (5)

where E('S 0 denotes the expectation operator, defined in the previous section, that depends on

initial conditions (S,X') € R, xR, , P €R,, denotes the subjective discount factor and

7' =7'(w) e T', which is given in Definition 3, for Vi=12,...,1.

Now, employing the classical technique of dynamic programming, the following proposition is thus
established,

PROPOSITION 1: Guven the optimization problem constructed in (4) and (5), and based upon the above
assumptions, we get if,

Ao [+ (B -Dx(t)1
+|Zl:J-RO B [(1+ 170, z))ﬂ'-l _1} yO (¢, 2)vi (dz,) <0, “

in which YV (t,2) represents the | -th column of matrix y(t, ) . Then, there exists an optimal ©'(t) € A such
that,

L' M)+ (f -D(t)7" (1)
A (@0 e) 2|0 v o, Z
with B €R . a solution of the following equation,

P =P [7 O O O+10]+ 35 (5 D" O OO

+ZHJIRO [(1+ 7" ()" yV(, z))ﬁi —1-B @)y (t, z)}vli (dz,), 8)
Jor Vi=12,...,1.
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PROOF: See Appendix A. m

REMARK 4: Proposition 1 proves the existence of optimal portfolio policy for each investor under
our assumptions and constructions while we cannot express the optimal solution explicitly in the
present circumstance, which however is not important. Actually, we only need to prove the existence
of the optimal portfolio policy for the purpose of the current paper. And also optimal consumption-
porttfolio policy can be derived by using the classical martingale duality approach (see, Karatzas et al,
1987, 1991) for very general preference functions. Therefore, this is why we argue that employing log
preference is just for the sake of simplicity and also without loss of any generality for the purpose of
the present paper.

4. Sub-game perfect Nash equilibrium bankruptcy time

By Definition 2, Step 1 has been completed in section 3, and then the major goal of the present
section is to complete Step 2, that is, to determine the sub-game perfect Nash equilibrium
bankruptcy time corresponding to the case without consumption. It follows from Proposition 1 that
optimal wealth accumulation amounts to,

dX'(t) = X' 7" ®) O' () +r(t) |dt+ X' ()" )" o(t)dW' (1)
X7 @) jRO #(t, )N (dt, dz), 9)
subject to X' (0)=x' €R,,, P' —a.s.. Now, we need the following assumption,
ASSUMPTION 4: In what follows, suppose that there exist processes 6'(S,2) = (6,(S,2,),05(S,2,), ...,

0.(s,2,))" €R" with 6/(5,2,) <1 and &' (S) € R that are F' — predictable such that,

A o) O+ [ 26 6,265, 2)v(02)

=7"(s)' @' (s)+r(s), u®P' —ae. (10)
U J.OTI(M)”ai(S)”g ds <o, P'— 4. (11)
3 [ Ji, [11og(+6(s.2)) | +116'(s,2) I Jwi (dz) < o0, P' —ac 12)

Jor aa. (S, o)€][0, ' ()]xQ', z, € Ry, and 7O, 2) represents the | -th column of matrix y(t,2) ,
Vi=12,...,1 and Y1 =12,...,n.

Now, letting,

Z'(t) =exp {Zn:.[; J.RO [|Og(1_ 9/ (s,2))+6 (s, z, )]Vli (dz,)ds
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~[ o' (8) dW'(s) [ 1 &' (5) IE ds

+§n; j; ch log (16} (s,2,))Ni (ds, dzl)}, (13)
And define a new measure Q' on Frii by,
dQ' () = Z' (@, 7' (w))dP' (@), (14)

ie., Z'(w,7'(®)) is the well-known Radon-Nikodym derivative. By Assumption 4, Z'(@,7' (®))
satisfies the Novikov condition, that is,

3 [exp(% Ji el @)1 os

+ijor‘ J-RO {(1_gli (s, Z|)) log (1— g (s, z, ))+ 0 (s, Zl)}vli (dzl)dsﬂ <00, (15)

Then E'[Z'(w,7' ())]= 1. And hence, according to the well-known Girsanov Theorem for Lévy

processes, Q' is a new probability measure on F:i and X'(t) will be a (local) martingale w. r. t. the
probability law Q'. Define,

N iQi| (ds,dz,) = ' (ds, dz,)v] (dz,)ds + N (ds,dz)), (16)

dWC;i (s)=ca'(s)ds+dW'(s) , (17)

Then NIQiI(',') and WC;, (-) are compensated Poisson random measure of N:(,) and Brownian

motion under Q', respectively, for (S,w) e [0,2‘i (a))]xQi , Vi=12,..,1 and VI=12,...,n. And we

will denote by E(i?i the expectation operator w. t. t. the probability law Qi , Vi=12,.,1, and EQ

b

the expectation operator w. r. t. the probability law Q=Q'®...®Q". Now, the optimal wealth
accumulation given in (9) can be rewritten as follows,

dX'(t) = X' (t) 2" ()" a(t)dw(; )+ X' )7 @)" Lg 2(t,2)No (dt, dz), (18)

subject to X'(0)=x' €R,, Q' —a.s.. And hence the optimal stopping problem facing investor i can

be expressed as follows,

sup E., e 9 og X'(¢) (19)
' (0)eT Q' (s |: :|
subject to the new Lévy SDE given by (18), for Vi=12,..,1. Let Y'({t)=(s+t, X' (1))’

Y'(0)=(s,Xx")", then the differential generator of Y' (t) reads as follows,

L'g' (s, x)— ¢I += (7z'*) > 6( ) { s X' +x (7' )T;/(')(z))
i i i* | 6¢
-¢'(s,X) = (7") 7V (2)X % }‘4 (dz)), (20)
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If we try a function @' of the form,

# (s,x') = g (Xi)li for some constant A' €R,
Then we get,

Ligi (s, %) = g s |:_pi (Xi)li +%(ﬂ_i*)T s (X )2 (A _1)(Xi)/1'—2
NN {(xi XY PO@) ) ) FO@K A KY va) |

=e () ' (4),
where ' (1) =—p! +%(7z'i*)T27ri*/’ti (4 -1)

+ y 1+ (7)) W (z g ) yO(z ii}Vi dz)),
;j&){( () 70@) -1- (") @2 i)
Notice that, w'()=—p' <0 and limy'(A')=c . Therefore, there exists A' >1 such that
A 50

w'(A') =0. And with this value of A' we put,
o e Cl(x")*, (s,x") e D'
g(s,x)=3 | . . . (21)

e ”*logx', (s,x') ¢ D'

for some constant C' >0, remains to be determined. If we let,
g'(s,x)=e""logx, (22)
Hence, applying (20) to (22) leads us to,

Ligi(s,x')=e*" [_Pi log X _%(”i*)T z7"
+,Z::IRO {'09 (1+ (") (Z))— (7")" 7 (Z)} M (dz.)} 7

X< exp{i{—l(ﬂ‘*)TZﬁi*
pl 2

+3 [ flog 1+ ) @) - O @) (dz.)}},

Therefore,
i i\ i 1) 1 e i
U'=<(s, X)X <exp| —|—=(7") Zx
plL 2
w2 [ {log(1+@") 7 (@)~ (=) " @)W (dz.)D}, (23)
=1
Thus, we guess that the continuation region D' has the form,
D' ={(s,x');0< x' <x"}, (24)
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For some X such that U' < D', ie.,

Xi* > exp{il|:_l(7z_l*)T zﬂ_i*
plL 2

[ {log (L+ (=) 7 (@)~ ()" y“’(z)}v:(dz.)}}, (25)
1=1
Hence, with (24) we can rewrite (21) as follows,
e ci(x)”, 0<x <x*
#(s,x)=1 . o (26)
e ”*logx', X' >x"

for some constant C' >0, remains to be determined. We guess that the value function ¢' is C' at
X' = X" and this implies the following “smooth fit” conditions,
C'(x")* =log X" (continuity at X' = X") (27)
CIA'(X")* ™ =(x™)? (differentiability at X' = X" (28)
Combining equation (27) with (28) shows that,

CICA T LN EY
Ciﬂ,i(xi*)ll_l (Xi*)fl =X exp ii ’ (29)
and,
2 i = L e
C _ﬂ,i (X ) ﬂi exp( 1): (30)

To summarize, then we have,
PROPOSITION 2: Based upon the above assumptions and constructions, if,
© i 7T i . i% T (1) 2 i
jo {—7[' )" =) 7" (t) +§ jRo[n' Oyt 2) ] vi(dz)-2p' }dt <o, (31)

Q' —a.s., where j/(l) (t,2) represents the | -th column of matrixc y(X,Z) . Then we obtain the optimal discretionary
stopping time T (@) =inf{t > 0; X' (t) =x"} e T In particular, if £ (t), (t), y(t,2) and o (t) are all

constants, and

éfao {log (1+(=") 7" (2)) - (=") 7" (2)}vi(dz) > %(”i*)TZ”i*’ -

with 220 V' —a.s., then we get T (@) <00 Q' — a.5.. Moreover, g (s,X') = e " %(Xi*)_/1i (Xi)/Ii , which

is a supermeanvalued majorant of Q' (S,X') with X" and A" given by (29) and w'(A') =0, respectively, for
vi=12,..,1.
PROOF: See Appendix B. m

REMARK 5: First, it is worth emphasizing that it follows from Proposition 2 that the efficient
terminal wealth is endogenously determined. The efficient terminal wealth, rather, plays the role of free
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boundary in the corresponding optimal stopping problem of continuous time. Existing literatures
usually refer to the optimal stopping time as an optimal bankruptcy time. Nonetheless, this is far
from being the only economic story in reality. For example, one may think of the following scenario:
all investors try their best to invest as skillfully as possible before “retiring” from the stock market
and putting all their holdings in the bank, that is, they need to determine an optimal “retiring time”
from the risky stock market, as is argued by Karatzas and Wang (2001). And finally, it is also worth
noting that one just need to demonstrate the existence of the optimal bankruptcy time or sub-game
perfect Nash equilibrium bankruptcy time for the major goal of the current paper. So, employing log
preference just makes things much easier from the view of point of mathematical computations
without losing any necessary economic logics.

5. Wealth martingale and neighborhood turnpike theorem

According to Proposition 2, we get, based upon the optimal portfolio given in Proposition 1 and the
well-known Girsanov Theorem for Lévy diffusions, that the optimal wealth accumulation reads as
follows,

dX'(t) = X' ()7 ()" a(t)dw(; O+ X'z @) Lg 2(t,2)No (dt, dz), (18’)
subject to X i ©)= X' e R.. Q' —as. for Vi=12,...,1. And also it follows from Proposition 2 that
the sub-game perfect Nash equilibrium bankruptcy time reads as follows,

(o) =inf{t > 0; X' (t) = x"*}, (33)

with X" given by (29). It is easily scen from (18") that X'(t) is a martingale w. 1. t. the probability
law Q' for Vi=12,...,1. And the major goal of the present section is to explore the turnpike

property of the vector of efficient terminal wealth X" =(X",...,x'")". Before giving the turnpike
theorem, we first introduce the following lemma,

LEMMA 1 (Norm Equivalence): For any real vector X € R", and based on the mathematical notations given at
the end of section 2, then we bhave || X||,< 1| x|, .

PROOF: Noting that,
13 7+ 1% [P et X P[] % [t X ])

1
S ([ +1% P+t [ P2 S 1% [+t [X ]l XX, (34)
And,
1 11 [ oty b g +max |, |+ max = | max | << I, (35)

So combining (34) with (35) yields the desired result. m

Now, we state and prove the key theorem of the present investigation,
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THEOREM 1 (Neighborhood Turnpike Theorem): Given X'(t) and X" determined by (18") and (33),
respectively, for N1=12,.., | . If we define X ()= (X (t),... X' ), which is given by (3), and
X = (X", XY, then we get || X(®) =X |l,< &, Q—aw. forte[0,2°] with t" =" v..v1'" <oo, for
Y& >0, which may depend on ©°, and for Q1 Q' ®...0Q" .

PROOF: By the Doob’s Martingale Inequality, Q' {sup | X' > & }<—EI |:| X'(T) |:| = | ,

0st<T
VE >0, VO<T <" ().

. . . 1
Without loss of generality, we put & =2* for Vk e N, then we get, Q' {sup | X'(t) > Zk}S?X' ,

0<t<T

VkeN.
By the well-known Borel-Cantelli Lemma, Q' {sup | X'(t) > 2" i.m.k} =
0<t<T
where imk denotes “infinitely many k 7. So for aa. @eQ', there exists K(w) such that,
sup | X'(t) |< 2%, as. for k >k (w).

0<t<T
Thus, we see that,

lim sup | X'(t)|< 2%, as. for k >k (). (36)

To7" (o) o<t<T
Consequently, X'(t) = X'(t,®) is uniformly bounded for Vt €[0,T] for VO<T < 7" (@) and for
aa. weQ' . Furthermore, it is casily seen from Proposition 2 that X'(t)—X" is also an

F' —martingale w. r. t. Q'. So, applying the Doob’s Martingale Inequality again implies that,

Q' {sup | X' (t) —x" |>—}<—E' [| X'(T)=x" |] Ve' >0, VO<T <7 (w).
0<t<T

Provided the definition of 7" (@) given by (33), we see that there exists &' >0 such that the above
martingale inequality still holds for Vte B' (T (@) ={t=0;|t-7" |< 6"}, for Vi=12,.,] by

applying Doob’s Optional Sampling Theorem. Without loss of any generality, we set 5 =2 for
vk € N . Hence, for VT, € B;i (" (®)) and according to the continuity of martingale w. r. t. t for

any given @ € Q', condition (36) and the well-known Lebesgue Dominated Convergence Theorem,

k—o0 0<t<Tk

we obtain limsupQ' { sup | X' (t)—x" | } < lilimsup E., [| X'(T))=x"[]=0, which yields,
& k—o0

IimsupQ‘{sup | X'(t) —x" |<—i}>1

k—o0 o<t <Tk
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Letting &' =271, Vk e N , we get, Iimsuin{sup_ | X'(t) = x" |< Z_k}:]., VkeN.

k—o 0<t<T,

It follows from the well-known Fatou’s Lemma that, Q' { sup | X ") -x"|<2* } =1, VkeN.

0<t<r" (o)
Then applying the Borel-Cantelli Lemma again implies that, Q' { sup | X ") —-x"|<2* i.m.k} =1,
0<t<r" (o)

in which i.mk denotes “infinitely many K ”. So for a.a. @€ Q' there exists k(@) such that,
sup | X'(t)—x" <27, for k > Kk(w).
o<t<r™ (w)
Thatis, sup |X ") —x" |< 8T, Q' —as., for Vi=12,..., 1. Now, using Lemma 1 reveals that,

0<t<r" (o)
IX (@) =" < I X=X L= max| X"(t) - x"|
<Imax sup |X'(t)—-x"|<1 mangSman‘ =¢,Q—as.
I ost<c™(w) ! !

which gives the desired result. m

REMARK 6: Theorem 1 would be regarded as a stability characterization of optimal wealth dynamics,
that is, the optimal wealth path will always stay in the & —neighborhood of endogenously determined
efficient terminal wealth for each investor. And our stability theorem can be, in some sense, seen as a
natural correspondence to Liapounov stability theorem or dual Liapounov stability theorem
confirmed in macroeconomic models with an integration of competitive equilibrium theory and
optimal growth theory, see Yano (1999) and references therein for more details. Moreover, it is easily
seen from the proof of Theorem 1 that it is the martingale property but not the explicit forms of
optimal portfolio policy and sub-game perfect Nash equilibrium bankruptcy time that plays the key
role in demonstrating the neighborhood turnpike property of the vector of efficient terminal wealth
for all heterogeneous investors as a whole. And one, if motivated, can employ very general utility
functions and take the consumption strategy into account without changing the neighborhood
turnpike theorem proved in the present paper if the martingale property of wealth dynamics still
holds. That is to say, we have confirmed, in certain sense, the equivalence between the wealth
martingale and the neighborhood turnpike property of endogenously determined efficient terminal
wealth with being robust to preference specifications. This is, obviously, an interesting finding of the
current paper.

Finally, one may easily check that the neighborhood turnpike theorem proved in Theorem 1 is a little
stronger than existing ones (see, Bewley, 1982; McKenzie, 1982; Yano, 1984a, 1984b, 1998, 1999;
Marena and Montrucchio, 1999; Sahashi, 2002; Kamihigashi and Roy, 2007; Kondo, 2008, and
among others) by noting that the optimal wealth path will avays stay in the arbitrarily small
neighborhood of the efficient terminal wealth rather than eventually lie in the arbitrarily small
neighborhood of the efficient terminal wealth. Moreover, our stability theorem does not depend on
the choice of preference function, elasticity of intertemporal substitution and time discount factor.
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6. Concluding remarks

This study explores the turnpike properties of wealth dynamics in a dynamically complete market
(see, Anderson and Raimondo, 2008) with heterogeneous investors. Notice that most of existing
literatures consider the case where the expected utility is maximized with respect to the pre-specified
terminal wealth, the present study extends the traditional approach and efficient terminal wealth is
indeed endogenously derived following the optimal bankruptcy time or the sub-game perfect Nash
equilibrium bankruptcy time based upon the present study’s background.

Rather, the result that wealth martingale implies neighborhood turnpike property of the above efficient
terminal wealth as a whole for all investors has been demonstrated, which would in some sense shed
some lights on our understanding of both wealth-driven selection theory when discretionary stopping
time is taken into account and neighborhood turnpike theorem of optimal wealth accumulation in
financial economics.

Furthermore, it would be necessary for us to give some intuitive explanations regarding the major
concern and also contribution of the present limited investigation. As you can see, the issue of
optimal bankruptcy time plays at least the same, if not more important, role as that of optimal
portfolio policy in mathematical finance as well as in real-world financial markets. In fact, the above
two dimensions of optimal decisions facing the investors in financial markets are intimately
correlated with each other and hence not at all independent of each other as implicitly assumed in
many existing literatures. For example, if we suppose that the time is discrete and the classical
sequential rationality is fulfilled, then any given economic agent will stop her investment in the
current period when she was informed at the last period that she will definitely die in the next period.
Naturally, if there is an initial investment period and based upon the well-known backward induction
principle, what will be the investor’s optimal investment arrangement when she is informed about
her exact longevity at the initial investment period? Or, if she is informed about her exact longevity at
any given indeterminate or intermediate investment period, then what will be her optimal investment
decision now. So, the paper emphasizes that both the optimal portfolio policy and the optimal
bankruptcy time should be endogenously determined to capture the above complex decision
circumstance facing any investor in the financial market. Interestingly, the advantage of the optimal
stopping theory employed here is that we can also endogenously determine the efficient terminal
wealth of the investors. Noting that it is the terminal wealth that plays a crucial role in establishing
optimal portfolio policy for investors, the endogenous constant terminal wealth rather than the
exogenously given terminal wealth widely used in existing studies indeed makes things much easier in
explicit computation and also implies much richer economic implications, i.e., as in reality, the
endogenous terminal wealth captures the fact that it indeed depends on many relevant environment
parameters such as discount factor, portfolio policy and the underlying stochastic fluctuation.

Last but not least, one can interpret the major result that wealth martingale implies neighborhood turnpike
property from the following two perspectives: on the one hand, if we focus on the financial
institutional arrangement for some developing economies, then the condition wealth martingale
implies the underlying requirement that the financial market is perfect and no arbitrage opportunities
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exist, which of course is the baseline characteristic of advanced or developed financial markets
nowadays, that is, investors accumulate financial wealth in a fair market environment; on the other
hand, neighborhood turnpike property pictures the efficient level of the underlying financial market,
Le., all investors accumulate their financial wealth to maximize their utilities, respectively. To
summarize, the major contribution wealth martingale implies neighborhood turnpike property provides us
with an internal\intrinsic relationship between the issue of fairmess and that of ¢fficiency of the financial-
market institutions in real-world economies. Accordingly, the basic or possible lesson, as mentioned
by the reviewer, derived from our exploration is that financial institutional arrangements in reality
should impose some exogenous constraints on the heterogeneous investors so that they have to
agree to accumulate their financial wealth following the martingale path needed.
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The corresponding stochastic Bellman partial differential equation (SBPDE) reads as follows,
~J{(t X' (1)

T X X' O[O0 ) +r®) ]+ 13}, € X' O)X' @)
= max xyzi(t)Tz(t);zi(t)+zn:jR [Ji(t,Xi(t)+Xi(t)ﬁi(t)Ty(')(t,Z)) , (A1)

7' (t)eA
—3( X ) =35 (6 X O)X O ()7 7V (¢ 2) v (dz)

where 7" (t,z) represents the |-th column of matrix y(t,z), and the boundary value condition is

given by,
3@, X' (7)) =e7 " log X' (7'), (A2)

If we try,
Jit, X () =e #IC X (1) (A.3)

for some C', ﬂi >0, to be determined. Then we get,

I, X (@) =—p'e ?IC X (1) (A4)
3. (LX) =eIC X M), (A3)
e X ©) =7 IC (B -DX (1), (A.6)

Substituting (A.3)-(A.6) into (A.1) gives,
B2 O O M+rt) ]+ 188 -V ®) M) 1)+

= n ; , A7
=) [(1+ 70" 0,2) -1-A7 O z)}v.‘ (dz) Y
Performing the maximization_produces,
L'(7' ) =p'0't) + ' (B -D(O)7' (1)
+Zn: jRO i3 {(1+ 70y, z))ﬂ . —1} 7V (t,2)v (dz,) =0, (A.8)
It follows from Assumptior_l 1 that,
L'(0)=4'0'(t) = #'Ib'(t) - r(t)1]> 0, (A9)

Thus, we see that if,

L'(1)=p'0't)+4' (5 -D=(t)L
+Zn:jRo i3 {(1+ 1750t z))ﬂ'_l —1} 7" (t,2)v/(dz,) <0, (A.10)
Then there exists an optimal 7' (t) € (0,1]" for any ' € R, . Now, inserting this 7' (t) into (A.7)

reveals that, ¢'(f) ="+ £ [ 2" ©' () +r(V) ]+ %ﬂi (B -D7" () Z()7" 1)

+ZH:IRO |:(1+7Z-i*(t)T O, Z))ﬂ‘ - BT O, Z)i|vli (dz,) =0, (A11)
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Noting that,
P (0)=—p' <0 and lim ¢'(B') =0, (A.12)
B0

Consequently, there exists S' € R ., such that @' (") =0. Moreover, one can derive C' from using
the boundary value condition given in (A.2). And this completes the proof. m

B. Proof of Proposition 2.

It follows from the “Integro-variational inequalities for optimal stopping” (see, Theorem 2.2, pp. 29)
of Oksendal and Sulem (2005), we need to prove the following cases,

(i) We need to prove that ¢' >g' on D', ie., C' (Xi)ﬂi >logx' for 0< X' < Xx".

Define ¢(X') ECi(Xi)Ai —log x'. By our chosen values of C' and X", we get ¢(X") = ¢'(x*)=0.
Moteover, since ¢"(x')=C'A' (1! —1)(Xi)ii_2 +(X')? >0 with our chosen value of A', then we get
c(x')>0 forall 0<x' <x". And this completes the proof.

(i) Outside D' we have ¢'(s,X') = er" log X' and so,

Lg (s, x')=e"° [—pi log x —%(n‘*fzﬁi* +2 J {log(1+(") 7" @)~ (") 7 @)W (dz.)}

<0 for VX' > X" <X > exp{i{—%(ﬁ‘*)TZﬁi*
Je,

1=1

+ZH:J‘RO {|Og (l—l— (7Z'i*)T }/(I) (Z))— (ﬂ_i*)T }/(I) (Z)}V|i (le)}}, vxi > xi*

< X" >exp {%l:—%(ﬂ'i*f >z +,Z::-[Ro {Iog (1+ =) 7 (@) - (=) ¥ (z)} v (dzl)}}.
which holds by (25).

(i) Noting from (29) that X" <oo, thus [0,X"] is compact set by Heine-Borel Theorem.
Accordingly, ¢' is bounded on [0,X"] via applying the fact that ¢ €C?(R?) and the well-known

~ is uniformly integrable on

reT

Weierstrass Theorem. So, it suffices to check that, {e“’ i log X' (Z'i)}

[x",00),
where T' denotes the set of admissible stopping time and the uniform topology is naturally induced
by the norm, which is induced by inner product, of Hilbert space L*(Q', F',Q"). For this to hold, it

suffices to show that there exists a constant M' <o such that, E, e 2" (log X' (¢ ’ <M' for
0 g

all 7'(w)eT and X'(r')>x". Since, 0<log X' (z') < X'(z') on [x™,0).
Hence, we get,
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E, [ezPi’i (log X (r‘))z} <E, [ezPi’i (x‘(ri)ﬂ
=E, {(X‘)2 exp[ZI; {—%ﬂi*(t)Tz(t);z‘*(t) +i J. [log (147" @' 7. 2))
—7" ()" 7t 2) | (dz )} dt—2p'z" + zjori 7" (1) o (t)dW, (t)

+2i jo J Jog 1+ 7" 7 7" (t.2)) Nen et dzl)ﬂ, B.1)

= (X)Ey {exp(ff {—ﬁ‘*(t)T ()" (1) + 2i J..[log (147" " 7. 2))
7@ 0 (,2) Y Gz ot - 207 + 2 20 (OIW, ()

5 jo J. {(1+7ri*(t)T yO(t,2)) ~1-2log(L+ 7" ®) 7" (t, z))} v (dzl)dtﬂ (B.2)
=(x')? E(‘gi {exp[]}ji {—ﬂ'i*(t)T (t) 7" (t) +ZH:J'D I:ﬂ'i*(t)T 7Ot z)]2 V! (dzl)}dt

2pi7 42 J.o 7 (1) o(t)dW, (t)ﬂ : (B.3)

where we have used Assumption 2 and y"(t,z) denotes the | -th column of matrix y(t,z) .
Moreover, from (B.1) to (B.2) we have used the following fact, i.e., for the following equation,

d¥(t) =¥(t) jRO (e —1)N(dt,dz), ¥(0) =1. (B.4)

which has the solution,

W(t) = exp{ JoJ ¢6.oN@s.a- [ ], (e —1)v(dz)ds}

=exp {J; IRO & (s,z)N(ds, dz) —J: IRO [eg(“) —1-£(s, z)]v(dz)ds} . (B.5)
Suppose, J-; IRO (eg(s,z) —1)2 v(dz)ds <o,
Then by (B.4) we see that EiQ, [‘P(t)] =1and hence by (B.5) we obtain,

E(‘gi [exp(ﬁ IRO &(s, z)N(ds, dz))} =exp {I; Lﬂ [eg(”) —1-£(s, z)}v(dz)ds} .

If we put ¢(s,z)=log(1+ 7 (s)" 7" (s,2))?, then (B.2) follows. Thus, we conclude from (B.3) that
if, [ {—n‘*(tfz(t)n‘*(t) £y [ [0 2)] vi(dz)-2p }dt <o, Q' —as.

Then the desired result follows.
(iv) By using Ito’s rule and (18), we get,
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X' =x exp{ J {—%niwsfz(s)ni*(s) +2 Ji,[log(1+7" ()" 1" (s.2))
~7(s) 7" (5,2) Jvi(dz)} s+ [ 2 (9)" o(S)dWy, (5)
+2 Jo ], toa (147 (9)" 7 (5.2)) N (ds, dz.)} :
In particular, if 7" (t), Z(t), 7(t,z) and o(t) are all constants, then we get,
X'(®)=x epo—%(ni*)Txn‘* +Z J..[log (1+ ") 7 2))
(=" 7" @) Jvi (dz) jt+ 7 O SO (1)

n t e (1) i i
+;jo jRO log (1+(z") 7 (2)) N (ds, dz,)]
By the law of iterated logarithm for Brownian motion, we see that if,

Z J, floa(L+ (=) 10 @) - (") PO @i () > S () 2

with z>0 v' —as., then we get lim,__ X'(t) =00 Q' —a.s. and particularly, 7" (@) <o Q' —as. m
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